- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
コンセプトドリフト対処のための、Adversarial Validationを用いた学習データ選択に関する考察
Search this article
Description
機械学習コンテストにおいてはよく利用されるAdversarial Validationを用いた先行研究は知りうる限り少ない。Adversarial Validationとは、機械学習において訓練データとテストデータの分布の違いを検出するアプローチのことで、その分布の違いを加味して訓練データを調整することによって、より精度の高いモデルを得るなどの目的で利用される。 本論文では、Adversarial Validationをコンセプトドリフトの問題解決のために利用した先行研究の内容を拡張し、特徴量選択ではなくデータ選択の観点からバリデーションを行う方法について実験を行った。その結果、特徴量選択を行うよりも精度が向上するケースがあることを評価した。
Journal
-
- 第84回全国大会講演論文集
-
第84回全国大会講演論文集 2022 (1), 709-710, 2022-02-17
情報処理学会
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1050294020602455936
-
- NII Book ID
- AN00349328
-
- Text Lang
- ja
-
- Article Type
- conference paper
-
- Data Source
-
- IRDB