Differential geometric approach to the stress aspect of a fault: Airy stress function surface and curvatures
この論文をさがす
説明
We considered the two-dimensional stress aspect of a fault from the viewpoint of differential geometry. For this analysis, we concentrated on the curvatures of the Airy stress function surface. We found the following: (i) Because the principal stresses are the principal curvatures of the stress function surface, the first and the second invariant quantities in the elasticity correspond to invariant quantities in differential geometry; specifically, the mean and Gaussian curvatures, respectively; (ii) Coulomb’s failure criterion shows that the coefficient of friction is the physical expression of the geometric energy of the stress function surface; (iii) The differential geometric expression of the Goursat formula shows that the fault (dislocation) type (strike-slip or dip-slip) corresponds to the stress function surface type (elliptic or hyperbolic). Finally, we discuss the need to use non-biharmonic stress tensor theory to describe the stress aspect of multi-faults or an earthquake source zone.
収録刊行物
-
- Acta Geophysica
-
Acta Geophysica 60 (1), 4-23, 2012-02
SP Versita
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050294045369326976
-
- NII論文ID
- 120006731205
-
- ISSN
- 18957455
- 18956572
-
- HANDLE
- 20.500.14094/90006376
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE