Complexation of F<sup>–</sup> by Li<sup>+</sup> and Mg<sup>2+</sup> Ions as Inorganic Anion Acceptors in Lactone-Based Li<sup>+</sup>/F<sup>–</sup> and Mg<sup>2+</sup>/F<sup>–</sup> Hybrid Electrolytes for Fluoride Shuttle Batteries

書誌事項

タイトル別名
  • Complexation of F⁻ by Li⁺ and Mg²⁺ Ions as Inorganic Anion Acceptors in Lactone-Based Li⁺/F⁻ and Mg²⁺/F⁻ Hybrid Electrolytes for Fluoride Shuttle Batteries

この論文をさがす

説明

The development of high-quality fluoride-ion transporting electrolytes is a crucial demand for fluoride shuttle batteries (FSBs). However, the uncontrolled chemical and electrochemical activities of fluoride ions narrow the available potential window, hindering the development of high-voltage FSB cells. We present a method for upgrading recently developed lactone-based liquid fluoride electrolytes by complexation of F⁻ with Li⁺ and Mg²⁺ ions. In the resultant Li⁺/F⁻ and Mg²⁺/F⁻ hybrid electrolytes, Li2F+ and MgF+ were the most probable soluble complexes, and the effective fluoride concentrations could reach ∼0.15 M along with excess Li⁺(Mg²⁺) ions. Unique interactions between F⁻ and Li⁺(Mg²⁺) were observed using ¹⁹F nuclear magnetic resonance spectroscopy. Li⁺(Mg²⁺) ions thus served as inorganic anion acceptors with ultimate redox stabilities to expand the negative potential window of the electrolytes to near −3 V vs SHE. The proposed complex formation was also supported by a conductometric titration method. We demonstrated the superior and versatile electrochemical performances of the Li⁺/F⁻ hybrid electrolyte, which enabled reversible charge/discharge reactions of various metal electrodes and composite electrodes in a wide range of redox series. Further, the Li⁺/F⁻ hybrid electrolyte opened valid new reaction paths for aluminum, making it a promising negative electrode in high-voltage FSB cells.

収録刊行物

被引用文献 (2)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ