- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Observation of Antiferromagnetic Order as Odd-Parity Multipoles inside the Superconducting Phase in CeRh₂As₂
-
- Kibune, Mayu
- Department of Physics, Kyoto University
-
- Kitagawa, Shunsaku
- Department of Physics, Kyoto University
-
- Kinjo, Katsuki
- Department of Physics, Kyoto University
-
- Ogata, Shiki
- Department of Physics, Kyoto University
-
- Manago, Masahiro
- Department of Physics, Kyoto University
-
- Taniguchi, Takanori
- Department of Physics, Kyoto University
-
- Ishida, Kenji
- Department of Physics, Kyoto University
-
- Brando, Manuel
- Max Planck Institute for Chemical Physics of Solids
-
- Hassinger, Elena
- Max Planck Institute for Chemical Physics of Solids
-
- Rosner, Helge
- Max Planck Institute for Chemical Physics of Solids
-
- Geibel, Christoph
- Max Planck Institute for Chemical Physics of Solids
-
- Khim, Seunghyun
- Max Planck Institute for Chemical Physics of Solids
Bibliographic Information
- Other Title
-
- Observation of Antiferromagnetic Order as Odd-Parity Multipoles inside the Superconducting Phase in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>CeRh</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>As</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math>
Search this article
Description
Spatial inversion symmetry in crystal structures is closely related to the superconducting (SC) and magnetic properties of materials. Recently, several theoretical proposals that predict various interesting phenomena caused by the breaking of the local inversion symmetry have been presented. However, experimental validation has not yet progressed owing to the lack of model materials. Here we present evidence for antiferromagnetic (AFM) order in CeRh₂As₂ (SC transition temperature T[SC]∼0.37 K), wherein the Ce site breaks the local inversion symmetry. The evidence is based on the observation of different extents of broadening of the nuclear quadrupole resonance spectrum at two crystallographically inequivalent As sites. This AFM ordering breaks the inversion symmetry of this system, resulting in the activation of an odd-parity magnetic multipole. Moreover, the onset of antiferromagnetism T[N] within an SC phase, with T[N]<T[SC], is quite unusual in systems wherein superconductivity coexists or competes with magnetism. Our observations show that CeRh₂As₂ is a promising system to study how the absence of local inversion symmetry induces or influences unconventional magnetic and SC states, as well as their interaction.
Journal
-
- Physical Review Letters
-
Physical Review Letters 128 (5), 2022-02
American Physical Society (APS)
Related Articles
See more- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1050295956120025344
-
- ISSN
- 10797114
- 00319007
-
- HANDLE
- 2433/281776
-
- Text Lang
- en
-
- Article Type
- journal article
-
- Data Source
-
- IRDB
- Crossref
- KAKEN
- OpenAIRE