Towards automated gas leak detection through cluster analysis of mass spectrometer data
この論文をさがす
説明
In order to generate high-performance plasma for future fusion power generation, it is desirable to keep high quality vacuum during experiment. Mass spectrometer is commonly used to monitor the vacuum quality and to record the amount of atoms and molecules in the vacuum vessel. Leak is the most serious accident to avoid that can nullify an experiment and even harm researchers. Detecting leaks are ever more important since it can be easily overlooked, e.g., when the deterioration in the vacuum degree is modest. This forces the researcher to carefully observe the vacuum and mass spectrometer data. This article presents a way to suggest potential leaks in the vacuum vessel by analyzing mass spectrometer data. This is done by utilizing the Euclidean distance between composition ratios at different times for the clustering using the daily composition ratio. We show that our cluster analysis is an effective way of separating these two cases, which results in a semi-automatic determination of leaks is more efficient than the current norm, which is to check many measures to find a small abnormality in the data manually. We plan further model improvements for long-term evaluation.
収録刊行物
-
- Fusion Engineering and Design
-
Fusion Engineering and Design 180 113199-, 2022-07
Elsevier B.V.
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050298532703492608
-
- NII書誌ID
- AA10691446
-
- HANDLE
- 2324/4796022
-
- ISSN
- 09203796
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- Crossref
- OpenAIRE