Explaining reaction coordinates of alanine dipeptide isomerization obtained from deep neural networks using Explainable Artificial Intelligence (XAI)

  • 菊辻, 卓真
    大阪大学大学院基礎工学研究科物質創成専攻化学工学領域
  • 森, 勇介
    大阪大学大学院基礎工学研究科物質創成専攻化学工学領域
  • 岡崎, 圭一
    自然科学研究機構岡崎共通研究施設計算科学研究センター 総合研究大学院大学
  • 森, 俊文
    九州大学先導物質化学研究所 九州大学大学院総合理工学府
  • Kim, Kang
    大阪大学大学院基礎工学研究科物質創成専攻化学工学領域
  • 松林, 伸幸
    大阪大学大学院基礎工学研究科物質創成専攻化学工学領域

この論文をさがす

説明

A method for obtaining appropriate reaction coordinates is required to identify transition states distinguishing the product and reactant in complex molecular systems. Recently, abundant research has been devoted to obtaining reaction coordinates using artificial neural networks from deep learning literature, where many collective variables are typically utilized in the input layer. However, it is difficult to explain the details of which collective variables contribute to the predicted reaction coordinates owing to the complexity of the nonlinear functions in deep neural networks. To overcome this limitation, we used Explainable Artificial Intelligence (XAI) methods of the Local Interpretable Model-agnostic Explanation (LIME) and the game theory-based framework known as Shapley Additive exPlanations (SHAP). We demonstrated that XAI enables us to obtain the degree of contribution of each collective variable to reaction coordinates that is determined by nonlinear regressions with deep learning for the committor of the alanine dipeptide isomerization in vacuum. In particular, both LIME and SHAP provide important features to the predicted reaction coordinates, which are characterized by appropriate dihedral angles consistent with those previously reported from the committor test analysis. The present study offers an AI-aided framework to explain the appropriate reaction coordinates, which acquires considerable significance when the number of degrees of freedom increases.

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (79)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ