SPECTRAL ANALYSIS APPROACH TO THE MAXIMAL REGULARITY FOR THE STOKES EQUTIONS AND FREE BOUNDARY PROBLEM FOR THE NAVIER-STOKES EQUATIONS (Mathematical analysis of viscous incompressible fluid)

機関リポジトリ (HANDLE) オープンアクセス

この論文をさがす

説明

In this note, spectral analysis of initial boundary value problem with non-homogeneous boundary data is investigated. By R-boundedness of solution operators for 1 < 𝓟 <∞ and real interpolation methods for 𝓟 = 1, we shall show a maximal L[𝓟] regularity for the initial boundary value problem with non-homogeneous boundary data. Especially, for 1 < 𝓟 < ∞, the transference theorem enable us to make a general framework of unique existence of time periodic solutions. As an application of our approach, the Stokes equations with non-homogeneous free boundary conditions and the free boundary problem for the Navier-Stokes equtions in the half-space are discussed.

収録刊行物

関連プロジェクト

もっと見る

詳細情報 詳細情報について

  • CRID
    1050302237609568768
  • NII書誌ID
    AN00061013
  • HANDLE
    2433/290256
  • ISSN
    18802818
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • IRDB

問題の指摘

ページトップへ