SPECTRAL ANALYSIS APPROACH TO THE MAXIMAL REGULARITY FOR THE STOKES EQUTIONS AND FREE BOUNDARY PROBLEM FOR THE NAVIER-STOKES EQUATIONS (Mathematical analysis of viscous incompressible fluid)
-
- 柴田, 良弘
- 早稲田大学
この論文をさがす
説明
In this note, spectral analysis of initial boundary value problem with non-homogeneous boundary data is investigated. By R-boundedness of solution operators for 1 < 𝓟 <∞ and real interpolation methods for 𝓟 = 1, we shall show a maximal L[𝓟] regularity for the initial boundary value problem with non-homogeneous boundary data. Especially, for 1 < 𝓟 < ∞, the transference theorem enable us to make a general framework of unique existence of time periodic solutions. As an application of our approach, the Stokes equations with non-homogeneous free boundary conditions and the free boundary problem for the Navier-Stokes equtions in the half-space are discussed.
収録刊行物
-
- 数理解析研究所講究録
-
数理解析研究所講究録 2266 1-47, 2023-10
京都大学数理解析研究所
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1050302237609568768
-
- NII書誌ID
- AN00061013
-
- HANDLE
- 2433/290256
-
- ISSN
- 18802818
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB