Power packet transferability via symbol propagation matrix

DOI DOI 機関リポジトリ (HANDLE) HANDLE Web Site ほか2件をすべて表示 一部だけ表示 被引用文献4件 オープンアクセス

この論文をさがす

説明

A power packet is a unit of electric power composed of a power pulse and an information tag. In Shannon’s information theory, messages are represented by symbol sequences in a digitized manner. Referring to this formulation, we define symbols in power packetization as a minimum unit of power transferred by a tagged pulse. Here, power is digitized and quantized. In this paper, we consider packetized power in networks for a finite duration, giving symbols and their energies to the networks. A network structure is defined using a graph whose nodes represent routers, sources and destinations. First, we introduce the concept of a symbol propagation matrix (SPM) in which symbols are transferred at links during unit times. Packetized power is described as a network flow in a spatio-temporal structure. Then, we study the problem of selecting an SPM in terms of transferability, that is, the possibility to represent given energies at sources and destinations during the finite duration. To select an SPM, we consider a network flow problem of packetized power. The problem is formulated as an M-convex submodular flow problem which is a solvable generalization of the minimum cost flow problem. Finally, through examples, we verify that this formulation provides reasonable packetized power.

収録刊行物

被引用文献 (4)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ