KPZ equation with fractional derivatives of white noise (Mathematical Analysis of Viscous Incompressible Fluid)
-
- 星野, 壮登
- 東京大学数理科学研究科
この論文をさがす
説明
In this paper, we consider the KPZ equation driven by space-time white noise replaced with its fractional derivatives of order $gamma$>0 in spatial variable. A well-posedness theory for the KPZ equation is established by Hairer [3] as an application of the theory of regularity structures. Our aim is to see to what extent his theory works if noises become rougher. We can expect that his theory works if and only if $gamma$<1/2. However, we show that the renormalization like (partial_{x}h)^{2}-infty is well-posed only if $gamma$<1/4.
収録刊行物
-
- 数理解析研究所講究録
-
数理解析研究所講究録 2009 105-123, 2016-12
京都大学数理解析研究所
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050564285811068544
-
- NII論文ID
- 120006477741
-
- NII書誌ID
- AN00061013
-
- ISSN
- 18802818
-
- HANDLE
- 2433/231567
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- CiNii Articles