- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
ASYMPTOTIC EXPANSIONS FOR THE LAPLACE-MELLIN AND RIEMANN-LIOUVILLE TRANSFORMS OF LERCH ZETA-FUNCTIONS : PRE-ANNOUNCEMENT VERSION (Analytic Number Theory and Related Areas)
-
- Katsurada, Masanori
- DEPARTMENT OF MATHEMATICS, FACULTY OF ECONOMICS, KEIO UNIVERSITY
Bibliographic Information
- Other Title
-
- ASYMPTOTIC EXPANSIONS FOR THE LAPLACE-MELLIN AND RIEMANN-LIOUVILLE TRANSFORMS OF LERCH ZETA-FUNCTIONS (PRE-ANNOUNCEMENT VERSION)
Search this article
Description
This article summarizes the results appearing in the forthcoming paper [13]. For a complex variable s, and real parameters a and $lambda$ with a>0, the Lerch zetafunction $phi$(s, a, $lambda$) is defined by the Dirichlet series displaystyle sum_{l=0}^{infty}e($lambda$ l)(a+l)^{-s}({rm Re} s>1), and its meromorphic continuation over the whole s-plane, where e($lambda$)=e^{2 $pi$ i $lambda$}, and the domain of the parameter a can be extended to the whole sector |mathrm{a}xmathrm{g}z|< $pi$. It is treated in the present article several asymptotic aspects of the Laplace-Mellin and Riemann-Liouville (or Erdély-Köber) transforms of $phi$(s, a, $lambda$), together with its slight modification $phi$^{*}(s, a, $lambda$), both applied with respect to the (first) variable s and the (second) parameter a. We shall show that complete asymptotic expansions exist for these objects when the pivotal parameter z of the transforms tends to both 0 and infty through the sector |mathrm{a}xmathrm{g}z|< $pi$ (Theorems 1−8). It is ffirther shown that our main formulae can be applied to deduce certain asymptotic expansions for the weighted mean values of $phi$^{*}(s, a, $lambda$) through arbitrary vertical half lines in the s-plane (Corollaries 2.1 and 4.1), as well as to derive several variants of the power series and asymptotic series for Euler s gamma and psi functions (Corollaries 8.1−8.8).
Journal
-
- 数理解析研究所講究録
-
数理解析研究所講究録 2014 35-47, 2017-01
京都大学数理解析研究所
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1050564285811088128
-
- NII Article ID
- 120006477819
-
- NII Book ID
- AN00061013
-
- ISSN
- 18802818
-
- HANDLE
- 2433/231650
-
- NDL BIB ID
- 028097299
-
- Text Lang
- en
-
- Article Type
- departmental bulletin paper
-
- Data Source
-
- IRDB
- NDL Search
- CiNii Articles