Tutte polynomials and random-cluster models in Bernoulli cell complexes (Stochastic Analysis on Large Scale Interacting Systems)

機関リポジトリ (HANDLE) オープンアクセス

この論文をさがす

説明

This paper studies Bernoulli cell complexes from the perspective of persistent homology, Tutte polynomials, and random-cluster models. Following the previous work [9], we first show the asymptotic order of the expected lifetime sum of the persistent homology for the Bernoulli cell complex process on the ℓ-cubical lattice. Then, an explicit formula of the expected lifetime sum using the Tutte polynomial is derived. Furthermore, we study a higher dimensional generalization of the random-cluster model derived from the Edwards-Sokal type coupling, and show some basic results such as the positive association and the relation to the Tutte polynomial.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1050564288413953920
  • NII論文ID
    120006715340
  • NII書誌ID
    AA12196120
  • ISSN
    18816193
  • HANDLE
    2433/243608
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • IRDB
    • CiNii Articles

問題の指摘

ページトップへ