Tutte polynomials and random-cluster models in Bernoulli cell complexes (Stochastic Analysis on Large Scale Interacting Systems)
-
- ヒラオカ, ヤスアキ
- WPI-AIMR, Tohoku University
-
- シライ, トモユキ
- IMI, Kyushu University
この論文をさがす
説明
This paper studies Bernoulli cell complexes from the perspective of persistent homology, Tutte polynomials, and random-cluster models. Following the previous work [9], we first show the asymptotic order of the expected lifetime sum of the persistent homology for the Bernoulli cell complex process on the ℓ-cubical lattice. Then, an explicit formula of the expected lifetime sum using the Tutte polynomial is derived. Furthermore, we study a higher dimensional generalization of the random-cluster model derived from the Edwards-Sokal type coupling, and show some basic results such as the positive association and the relation to the Tutte polynomial.
収録刊行物
-
- 数理解析研究所講究録別冊
-
数理解析研究所講究録別冊 B59 289-304, 2016-07
Research Institute for Mathematical Sciences, Kyoto University
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1050564288413953920
-
- NII論文ID
- 120006715340
-
- NII書誌ID
- AA12196120
-
- ISSN
- 18816193
-
- HANDLE
- 2433/243608
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- CiNii Articles