Growth and cogrowth tightness of Kleinian and hyperbolic groups (Geometry and Analysis of Discrete Groups and Hyperbolic Spaces)

機関リポジトリ (HANDLE) オープンアクセス
  • 松崎, 克彦
    Department of Mathematics, School of Education, Waseda University

この論文をさがす

説明

Let G be a non-elementary discrete isometry group of the hyperbolic space or more generally a proper geodesic Gromov hyperbolic space X. We say that G is growth tight if for any non-trivial normal subgroup H the critical exponent k(H\G) of the quotient group is strictly smaller than k(G). Moreover, G is cogrowth tight if the critical exponent δ(H) of any such H is strictly greater than δ(G)/2. We review recent results on these properties of G with the addition of certain new observation. In particular, we see that a non-elementary quasi-convex cocompact discrete isometry group G of X is growth tight.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1050564288413975424
  • NII論文ID
    120006715416
  • NII書誌ID
    AA12196120
  • ISSN
    18816193
  • HANDLE
    2433/243691
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • IRDB
    • CiNii Articles

問題の指摘

ページトップへ