An explicit construction of non-tempered cusp forms on O(1,8n+1)
-
- 成田, 宏秋
- 早稲田大学
-
- Narita, Hiro-aki
- Department of Mathematics, Faculty of Science and Engineering, Waseda University
-
- Pitale, Ameya
- Department of Mathematics, University of Oklahoma
書誌事項
- タイトル別名
-
- An explicit construction of non-tempered cusp forms on $O(1,8n+1)$ (Analytic and Arithmetic Theory of Automorphic Forms)
この論文をさがす
説明
This short note is a write-up of the results presented by the second named author at RIMS workshop "Analytic and arithmetic theory of automorphic forms" The main result is an explicit construction of the rcal analytic cusp forms on O ({imath}, 8n+1) by a lifting from Maass cusp forms of level one. The lifting is proved to be Hecke-equivariant. Our results include an explicit formula for Hecke eigenvalues of the lifts and explicit determination of the cusidal representations generated by them. This leads to showing the nontemperedness of the cuspidal representations at every finite place, namely our explicit construction provides "real analytic counterexamples to Ramanujan conjecture".
収録刊行物
-
- 数理解析研究所講究録
-
数理解析研究所講究録 2100 179-186, 2019-01
京都大学数理解析研究所
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050566774764187520
-
- NII論文ID
- 120006861412
-
- NII書誌ID
- AN00061013
-
- ISSN
- 18802818
-
- HANDLE
- 2433/251803
-
- NDL書誌ID
- 029628196
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- NDLサーチ
- CiNii Articles