- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Randomized Reductions and the Topology of Conjectured Classes of Uniquely Hamiltonian Graphs
Search this article
Description
We utilize the hardness of the Unambiguous-SAT problem under randomized polynomial time reductions (Valiant & Vazirani; Theoret. Comput. Sci., Vol.47, 1986) to probe the required properties of counterexamples to open non-existence conjectures for uniquely Hamiltonian graphs under various topological constraints. Concerning ourselves with a generalization of Sheehan's 1975 conjecture that no uniquely Hamiltonian graphs exist in the class of (r ∈ 2 N>1)-regular graphs (for 4 ≤ r ≤ 22), Bondy & Jackson's 1998 conjecture that no uniquely Hamiltonian graphs exist in the class of planar graphs having at most one vertex of degree ≤ 2, and Fleischner's 2014 conjecture that no uniquely Hamiltonian graphs exist in the class of 4-vertex-connected graphs, we prove that each conjecture is false if and only if there exists a parsimonious reduction from #SAT to counting Hamiltonian cycles on each graph class in question. As the existence of such a reduction allows for the encoding of arbitrary Unambiguous-SAT problem instances, by the Valiant-Vazirani theorem we have that hypothetical sets of counterexamples for each non-existence conjecture cannot belong to any graph class with a polynomial time testable property implying tractability for the Hamiltonian cycle decision problem (unless NP = RP). ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.28(2020) (online) DOI http://dx.doi.org/10.2197/ipsjjip.28.876 ------------------------------
We utilize the hardness of the Unambiguous-SAT problem under randomized polynomial time reductions (Valiant & Vazirani; Theoret. Comput. Sci., Vol.47, 1986) to probe the required properties of counterexamples to open non-existence conjectures for uniquely Hamiltonian graphs under various topological constraints. Concerning ourselves with a generalization of Sheehan's 1975 conjecture that no uniquely Hamiltonian graphs exist in the class of (r ∈ 2 N>1)-regular graphs (for 4 ≤ r ≤ 22), Bondy & Jackson's 1998 conjecture that no uniquely Hamiltonian graphs exist in the class of planar graphs having at most one vertex of degree ≤ 2, and Fleischner's 2014 conjecture that no uniquely Hamiltonian graphs exist in the class of 4-vertex-connected graphs, we prove that each conjecture is false if and only if there exists a parsimonious reduction from #SAT to counting Hamiltonian cycles on each graph class in question. As the existence of such a reduction allows for the encoding of arbitrary Unambiguous-SAT problem instances, by the Valiant-Vazirani theorem we have that hypothetical sets of counterexamples for each non-existence conjecture cannot belong to any graph class with a polynomial time testable property implying tractability for the Hamiltonian cycle decision problem (unless NP = RP). ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.28(2020) (online) DOI http://dx.doi.org/10.2197/ipsjjip.28.876 ------------------------------
Journal
-
- 情報処理学会論文誌
-
情報処理学会論文誌 61 (12), 2020-12-15
- Tweet
Details 詳細情報について
-
- CRID
- 1050569247288535296
-
- NII Article ID
- 170000184194
-
- NII Book ID
- AN00116647
-
- ISSN
- 18827764
-
- Text Lang
- en
-
- Article Type
- journal article
-
- Data Source
-
- IRDB
- CiNii Articles