Anti-Stokes photoluminescence from CsPbBr₃ nanostructures embedded in a Cs₄PbBr₆ crystal

Bibliographic Information

Other Title
  • Anti-Stokes photoluminescence from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CsPbBr</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> nanostructures embedded in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cs</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi>PbBr</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math> crystal

Abstract

Lead halide perovskites possess high photoluminescence (PL) efficiency and strong electron-phonon interactions, and therefore optical cooling using up-conversion PL has been expected. We investigate anti-Stokes PL from green-luminescent Cs₄PbBr₆, whose origin is attributable to CsPbBr₃ nanostructures embedded in a Cs₄PbBr₆ crystal. Because of the high transparency, low refractive index, and high stability of Cs₄PbBr₆, the green PL displays high external quantum efficiency without photodegradation. Time-resolved PL spectroscopy reveals the excitonic behaviors in the recombination process. The shape of the PL spectrum is almost independent of excitation photon energy, which means that the spectral width is determined by homogeneous broadening. We demonstrate that the phonon-assisted process dominates the Urbach tail of optical absorption and anti-Stokes PL at room temperature. Anti-Stokes PL is observed down to 70 K. We determine the temperature dependence of the Urbach energy and estimate the strength of the electron-phonon coupling. Our spectroscopic data show that CsPbBr₃ nanostructures have potentially useful features for optical cooling.

Journal

Citations (3)*help

See more

References(61)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top