フィーチャに基づく深層学習モデル設計方法の提案と評価
Search this article
Description
従来の深層学習モデル開発では要求を満たすモデルの生成には,しばしば開発者の試行錯誤が必要とされる.このような発見的開発方法では,要求を満たす精度の学習モデルを効率的,かつ,安定して開発することは困難である.本稿では,データのフィーチャ(特徴量)に着目し,段階的に学習可能な学習モデル設計方法を提案する.提案方法では学習データの本質を表現するフィーチャをコントロールしながら段階的に学習を行うことで,学習のコントロールを実現する.これにより,機械学習ソフトウェア開発者が要求を満たす学習モデルの安定した開発を可能とする.提案方法をCifar10データセットに適用し, 有効性と妥当性を示す.
Journal
-
- 第83回全国大会講演論文集
-
第83回全国大会講演論文集 2021 (1), 445-446, 2021-03-04
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1050574047087161472
-
- NII Article ID
- 170000187034
-
- NII Book ID
- AN00349328
-
- Web Site
- http://id.nii.ac.jp/1001/00214914/
-
- Text Lang
- ja
-
- Article Type
- conference paper
-
- Data Source
-
- IRDB
- CiNii Articles