Gauge invariant input to neural network for path optimization method

DOI DOI 機関リポジトリ (HANDLE) HANDLE Web Site ほか1件をすべて表示 一部だけ表示 被引用文献3件 参考文献46件 オープンアクセス

この論文をさがす

説明

We investigate the efficiency of a gauge invariant input to a neural network for the path optimization method. While the path optimization with a completely gauge-fixed link-variable input has successfully tamed the sign problem in a simple gauge theory, the optimization does not work well when the gauge degrees of freedom remain. We propose to employ a gauge invariant input, such as a plaquette, to overcome this problem. The efficiency of the gauge invariant input to the neural network is evaluated for the two-dimensional U(1) gauge theory with a complex coupling. The average phase factor is significantly enhanced by the path optimization with the plaquette input, indicating good control of the sign problem. It opens a possibility that the path optimization is available to complicated gauge theories, including quantum chromodynamics, in a realistic setup.

収録刊行物

  • Physical Review D

    Physical Review D 105 (3), 2022-02

    American Physical Society (APS)

被引用文献 (3)*注記

もっと見る

参考文献 (46)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ