A partial order on the symmetric groups defined by 3-cycles
この論文をさがす
説明
We define a partial order on the symmetric group S_n of degree n by x ≥ y iff y = a_1 ··· a_kx with i(y) = i(x) + 2k where a_1, ··· , a_k are 3-cycles of increasing or decreasing consecutive three letters and i(*) is the number of inversions of the element * of S_n, on the analogy of the weak Bruhat order. Whether an even permutation is comparable to the identity or not in this ordering is considered. It is shown that all of the even permutations of degree n which map 1 to n or n - 1 are comparable to the identity.
紀要論文
収録刊行物
-
- Ryukyu mathematical journal
-
Ryukyu mathematical journal 15 19-42, 2002-12-30
Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050574201779965824
-
- NII論文ID
- 120001940940
-
- NII書誌ID
- AA10779580
-
- ISSN
- 1344008X
-
- HANDLE
- 20.500.12000/16107
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- CiNii Articles