Basin of Attraction of Associative Memory as it Evolves from Random Weights

機関リポジトリ (HANDLE) オープンアクセス
  • 今田, 彬
    奈良先端科学技術大学院大学情報科学研究科
  • 荒木, 啓二郎
    九州大学大学院システム情報科学研究院情報工学部門

説明

We apply genetic algorithms to fully connected Hopfield associative memory networks. Previously, we reported that a genetic algorithm can evolve networks with random synaptic weights to store some number of patterns by pruning some of its synapses. The associative memory capacity obtained in that experiment was around 16% of the number of neurons. However the size of basin of attraction was rather small compared to the original Hebb-rule associative memory. In this paper, we present a new version of the previous method trying to control the basin size. As far as we know, this is the first attempt to address the size of basin of attraction of associative memory by evolutionary processes.

詳細情報 詳細情報について

  • CRID
    1050580007680037504
  • NII論文ID
    120006655370
  • HANDLE
    2324/6339
  • 本文言語コード
    en
  • 資料種別
    conference paper
  • データソース種別
    • IRDB
    • CiNii Articles

問題の指摘

ページトップへ