Concurrent thermal conductivity measurement and internal structure observation of individual one-dimensional materials using scanning transmission electron microscopy

  • Li, Dawei
    九州大学大学院工学府航空宇宙工学専攻 九州大学カーボンニュートラル・エネルギー国際研究所
  • 李, 秦宜
    九州大学大学院工学研究院航空宇宙工学部門 九州大学カーボンニュートラル・エネルギー国際研究所
  • 生田, 竜也
    九州大学大学院工学研究院航空宇宙工学部門 九州大学カーボンニュートラル・エネルギー国際研究所
  • 髙橋, 厚史
    九州大学大学院工学研究院航空宇宙工学部門 九州大学カーボンニュートラル・エネルギー国際研究所

この論文をさがす

説明

The thermal conductivity of individual nanomaterials can vary from sample to sample due to the difference in the geometries and internal structures, and thus concurrent structure observation and thermal conductivity measurement at the nanoscale is highly desired but challenging. Here, we have developed an experimental method that allows concurrently the in-situ thermal conductivity measurement and the real-time internal structure observation of a single one-dimensional (1D) material using scanning transmission electron microscopy in a scanning electron microscope (STEM-in-SEM). In this method, the two ends of the 1D nanomaterial are bonded on a tungsten probe and a suspended platinum nanofilm, respectively. The platinum nanofilm serves simultaneously as a heater and a resistance thermometer, ensuring highly sensitive thermal measurements. The platinum nanofilm is fabricated on the edge of the silicon wafer so that the electron beam can transmit through the 1D material and be detected by the STEM detector, which caters for real-time observation of the inner nanostructure. Using this method, we in-situ measured the thermal conductivities of two cup-stacked carbon nanotubes and concurrently observed the internal hollow structures. We found that the sample with more structural disorders had a lower thermal conductivity. Our measurement method can pave the way to the sample24by-sample elucidation of the structure-property relationship for 1D materials.

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (44)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ