POINT CONFIGURATIONS, CREMONA TRANSFORMATIONS AND THE ELLIPTIC DIFFERENCE PAINLEVE EQUATION

機関リポジトリ (HANDLE) オープンアクセス

説明

A theoretical foundation for a generalization of the elliptic difference Painleve equation to higher dimensions is provided in the framework of birational Weyl group action on the space of point configurations in general position in a projective space. By introducing an elliptic parametrization of point configurations, a realization of the Weyl group is proposed as a group of Cremona transformations containing elliptic functions in the coefficients. For this elliptic Cremona system, a theory of $ \tau $-functions is developed to translate it into a system of bilinear equations of Hirota-Miwa type for the $ \tau $-functions on the lattice. Application of this approach is also discussed to the elliptic difference Painleve equation.

収録刊行物

  • MHF Preprint Series

    MHF Preprint Series 2005-5 2005-02-01

    Faculty of Mathematics, Kyushu University

詳細情報 詳細情報について

  • CRID
    1050580007680977152
  • HANDLE
    2324/3352
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB

問題の指摘

ページトップへ