Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs
説明
The precise regulation of the activity of Cas9 is crucial for safe and efficient editing. Here we show that the genome-editing activity of Cas9 can be constrained by the addition of cytosine stretches to the 5′-end of conventional single-guide RNAs (sgRNAs). Such a ‘safeguard sgRNA’ strategy, which is compatible with Cas12a and with systems for gene activation and interference via CRISPR (clustered regularly interspaced short palindromic repeats), leads to the length-dependent inhibition of the formation of functional Cas9 complexes. Short cytosine extensions reduced p53 activation and cytotoxicity in human pluripotent stem cells, and enhanced homology-directed repair while maintaining bi-allelic editing. Longer extensions further decreased on-target activity yet improved the specificity and precision of mono-allelic editing. By monitoring indels through a fluorescence-based allele-specific system and computational simulations, we identified optimal windows of Cas9 activity for a number of genome-editing applications, including bi-allelic and mono-allelic editing, and the generation and correction of disease-associated single-nucleotide substitutions via homology-directed repair. The safeguard-sgRNA strategy may improve the safety and applicability of genome editing.
収録刊行物
-
- Nature Biomedical Engineering
-
Nature Biomedical Engineering 7 (5), 672-691, 2023-04-10
Springer
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050581456521972480
-
- ISSN
- 2157846X
-
- HANDLE
- 2324/7161070
-
- PubMed
- 37037965
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- Crossref
- KAKEN
- OpenAIRE