On arithmetic Dijkgraaf-Witten theory
-
- 平野, 光
- 九州大学大学院数理学府
-
- KIM, Junhyeong
- 九州大学大学院数理学府
-
- 森下, 昌紀
- 九州大学大学院数理学府
この論文をさがす
説明
We present basic constructions and properties in arithmetic Chern-Simons theory with finite gauge group along the line of topological quantum field theory. For a finite set S of finite primes of a number field k, we construct arithmetic ana- logues of the Chern-Simons 1-cocycle, the prequantization bundle for a surface and the Chern-Simons functional for a 3-manifold. We then construct arithmetic ana- logues for k and S of the quantum Hilbert space (space of conformal blocks) and the Dijkgraaf-Witten partition function in (2+1)-dimensional Chern-Simons TQFT. We show some basic and functorial properties of those arithmetic analogues. Finally we show decomposition and gluing formulas for arithmetic Chern-Simons invariants and arithmetic Dijkgraaf-Witten partition functions.
収録刊行物
-
- Communications in Number Theory and Physics
-
Communications in Number Theory and Physics 17 (1), 1-61, 2023
International Press
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1050584940309222912
-
- NII書誌ID
- AA12157242
-
- ISSN
- 19314531
- 19314523
-
- HANDLE
- 2324/7339201
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- Crossref
- KAKEN
- OpenAIRE