On arithmetic Dijkgraaf-Witten theory

この論文をさがす

説明

We present basic constructions and properties in arithmetic Chern-Simons theory with finite gauge group along the line of topological quantum field theory. For a finite set S of finite primes of a number field k, we construct arithmetic ana- logues of the Chern-Simons 1-cocycle, the prequantization bundle for a surface and the Chern-Simons functional for a 3-manifold. We then construct arithmetic ana- logues for k and S of the quantum Hilbert space (space of conformal blocks) and the Dijkgraaf-Witten partition function in (2+1)-dimensional Chern-Simons TQFT. We show some basic and functorial properties of those arithmetic analogues. Finally we show decomposition and gluing formulas for arithmetic Chern-Simons invariants and arithmetic Dijkgraaf-Witten partition functions.

収録刊行物

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ