𝘵-quantized Cartan matrix and R-matrices for cuspidal modules over quiver Hecke algebras

この論文をさがす

説明

As every simple module of a quiver Hecke algebra appears as the image of the R-matrix defined on the convolution product of certain cuspidal modules, knowing the ℤ-invariants of the R-matrices between cuspidal modules is quite significant. In this paper, we prove that the (𝘲, 𝘵)-Cartan matrix specialized at 𝘲 = 1 of any finite type, called the 𝘵-quantized Cartan matrix, inform us of the invariants of R-matrices. To prove this, we use combinatorial AR-quivers associated with Dynkin quivers and their properties as crucial ingredients.

収録刊行物

関連プロジェクト

もっと見る

詳細情報 詳細情報について

  • CRID
    1050585636902505984
  • HANDLE
    2433/293799
  • ISSN
    00018708
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB

問題の指摘

ページトップへ