𝘵-quantized Cartan matrix and R-matrices for cuspidal modules over quiver Hecke algebras
-
- 柏原, 正樹
- 京都大学高等教育院; 京都大学数理解析研究所; 고등과학원
この論文をさがす
説明
As every simple module of a quiver Hecke algebra appears as the image of the R-matrix defined on the convolution product of certain cuspidal modules, knowing the ℤ-invariants of the R-matrices between cuspidal modules is quite significant. In this paper, we prove that the (𝘲, 𝘵)-Cartan matrix specialized at 𝘲 = 1 of any finite type, called the 𝘵-quantized Cartan matrix, inform us of the invariants of R-matrices. To prove this, we use combinatorial AR-quivers associated with Dynkin quivers and their properties as crucial ingredients.
収録刊行物
-
- Advances in Mathematics
-
Advances in Mathematics 441 2024-04
Elsevier BV
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050585636902505984
-
- HANDLE
- 2433/293799
-
- ISSN
- 00018708
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB