<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="script">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>a</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> improvement of 2D <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> lattice SYM theory
-
- 花田, 政範
- Yukawa Institute for Theoretical Physics, Kyoto University・The Hakubi Center for Advanced Research, Kyoto University・Department of Physics, University of Colorado
-
- Kadoh, Daisuke
- Hiyoshi Departments of Physics, and Research and Education Center for Natural Sciences, Keio University
-
- Matsuura, So
- Hiyoshi Departments of Physics, and Research and Education Center for Natural Sciences, Keio University
-
- Sugino, Fumihiko
- Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Seoul
書誌事項
- タイトル別名
-
- O(a) improvement of 2D N=(2,2) lattice SYM theory
説明
We perform a tree-level O(a) improvement of two-dimensional N=(2, 2) supersymmetric Yang–Mills theory on the lattice, motivated by the fast convergence in numerical simulations. The improvement respects an exact supersymmetry Q which is needed for obtaining the correct continuum limit without a parameter fine tuning. The improved lattice action is given within a milder locality condition in which the interactions are decaying as the exponential of the distance on the lattice. We also prove that the path-integral measure is invariant under the improved Q-transformation.
収録刊行物
-
- Nuclear Physics B
-
Nuclear Physics B 929 266-297, 2018-04
Elsevier BV
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1050845760787634944
-
- NII論文ID
- 120006463753
-
- ISSN
- 05503213
-
- HANDLE
- 2433/230965
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE