A Sequence of Behavior Spaces and the Structure of Its Convergent Space
説明
type:Article
The concept of behavior spaces introduced by Shiba plays an important role of systematic investigation of abelian differentials on an open Riemann surface. A behavior space consists of holomorphic differentials which satisfy a certain period condition and boundary behavior. For a Riemann surface of infinite genus, the existence of behavior spaces with a general period condition is not guaranteed. For the sake of this thesis we consider a sequence of behavior space and the convergence. The result is a steppingstone to the thesis.
京都工芸繊維大学 工芸学部研究報告 第54巻 理工・欧文(2005) pp.31-58
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050845762512624768
-
- NII論文ID
- 120000794773
-
- Web Site
- http://hdl.handle.net/10212/1718
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- CiNii Articles