A boundary control problem for the steady self-propelled motion of a rigid body in a Navier–Stokes fluid
この論文をさがす
説明
Consider a rigid body S⊂R^3 immersed in an infinitely extended Navier–Stokes fluid. We are interested in self-propelled motions of S in the steady state regime of the system rigid body-fluid, assuming that the mechanism used by the body to reach such a motion is modeled through a distribution of velocities v_* on ∂S. If the velocity V of S is given, can we find v_* that generates V? We show that this can be solved as a control problem in which v_* is a six-dimensional control such that either Suppv_*⊂Γ, an arbitrary nonempty open subset of ∂Ω, or v_*⋅n|∂Ω=0. We also show that one of the self-propelled conditions implies a better summability of the fluid velocity.
収録刊行物
-
- Annales de l'Institut Henri Poincaré C, Analyse non linéaire
-
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 34 (6), 1507-1541, 2017-12
Elsevier
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1050845763736072832
-
- NII論文ID
- 120006382266
-
- ISSN
- 18731430
- 02941449
-
- HANDLE
- 2237/27355
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- Crossref
- CiNii Articles
- OpenAIRE