On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities

DOI 機関リポジトリ (HANDLE) HANDLE HANDLE PDF ほか2件をすべて表示 一部だけ表示 被引用文献1件 オープンアクセス

この論文をさがす

説明

We study the Navier-Stokes equations for compressible barotropic fluids in a bounded or unbounded domain Ω of R^3. We first prove the local existence of solutions (ρ,u) in C([0,T_*]; (ρ^∞ + H^3(Ω)) × D^1_0 ∩ D^3)(Ω)) under the assumption that the data satisfies a natural compatibility condition. Then deriving the smoothing effect of the velocity u in t > 0, we conclude that (ρ,u) is a classical solution in (0,T_**) × Ω for some T_** ∈ (0,T_*]. For these results, the initial density needs not be bounded below away from zero and may vanish in an open subset (vacuum) of Ω.

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ