Spin-orbit coupling dependent energy transfer in luminescent nonanuclear Yb-Gd / Yb-Lu clusters

Search this article

Description

In luminescent lanthanide (Ln(III)) complexes, the yield and the lifetime of triplet excited state of organic ligands are crucial factors that affect the ligands-to-Ln(III) energy transfer efficiency. Such factors are dependent on spinorbit coupling induced by the Ln(III) ions that mixes different multiplicity states through heavy atom and paramagnetic effects. We investigated the role of these effects on the energy transfer efficiency in synthesized nonanuclear Yb-Gd / Yb-Lu clusters ([Ln(9)(mu-OH)(10)(butyl salicylate)(16)]NO3, Ln(9) = YbnGd9-n or YbnLu9-n, n = 0, 1, 3, 7, and 9). Based on the intensity of the fluorescence and phosphorescence of the ligands, the spin-orbit coupling strength was in the order of Yb(III) > Gd(III) > Lu(III). Various photophysical processes affecting the energy transfer efficiency in YbnGd9-n and YbnLu9-n clusters are discussed from the perspective of spin-orbit coupling and give insight in how to optimize energy transfer efficiencies.

Journal

References(18)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top