この論文をさがす
説明
Let Rj denote the jth Riesz transform on ℝn. We prove that there exists an absolute constant C>0 such that [Formula: see text] for any λ>0 and f∈L¹(ℝⁿ), where the above supremum is taken over measures of the form [Formula: see text]. This shows that to establish dimensional estimates for the weak-type (1,1) inequality for the Riesz transforms it suffices to study the corresponding weak-type inequality for Riesz transforms applied to a finite linear combination of Dirac masses. We use this fact to give a new proof of the best known dimensional upper bound, while our reduction result also applies to a more general class of Calderón–Zygmund operators.
source:https://www.worldscientific.com/doi/10.1142/S0219199720500728
収録刊行物
-
- Communications in Contemporary Mathematics
-
Communications in Contemporary Mathematics 23 2050072-, 2020-11-30
World Scientific Publishing
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050850247195172992
-
- NII論文ID
- 120006960361
-
- ISSN
- 02191997
- 17936683
-
- Web Site
- http://id.nii.ac.jp/1394/00001739/
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- CiNii Articles
- OpenAIRE