Shuffle-type product formulae of desingularized values of multiple zeta-functions (Algebraic Number Theory and Related Topics 2017)
-
- 小見山, 尚
- Graduate School of Mathematics, Nagoya University
この論文をさがす
説明
It is known that there are infinitely many singularities of multiple zeta functions and the special values at non-positive integer points are indeterminate. In order to give a suitable rigorous meaning of the special values there, Furusho, Komori, Matsumoto and Tsumura introduced desingularized values by using their desingularization method to resolve all singularities. On the other hand, Ebrahimi-Fard, Manchon and Singer introduced renormalized values by the renormalization method á la Connes and Kreimer and they showed that the values fulfill the shuffle-type product formula. In this paper, we show the shuffle-type product formulae for desingularized values.
収録刊行物
-
- 数理解析研究所講究録別冊
-
数理解析研究所講究録別冊 B83 83-104, 2020-10
Research Institute for Mathematical Sciences, Kyoto University
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050850634977892224
-
- NII論文ID
- 120006950501
-
- NII書誌ID
- AA12196120
-
- ISSN
- 18816193
-
- HANDLE
- 2433/260690
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- CiNii Articles