Integrable structures of specialized hypergeometric tau functions (Mathematical structures of integrable systems, its deepening and expansion)
-
- 高崎, 金久
- 近畿大学
この論文をさがす
説明
Okounkov's generating function of the double Hurwitz numbers of the Riemann sphere is a hypergeometric tau function of the 2D Toda hierarchy in the sense of Orlov and Scherbin. This tau function turns into a tau function of the lattice KP hierarchy by specializing one of the two sets of time variables to constants. When these constants are particular values, the specialized tau functions become solutions of various reductions of the lattice KP hierarchy, such as the lattice Gelfand-Dickey hierarchy, the Bogoyavlensky-Itoh-Narita lattice and the Ablowitz-Ladik hierarchy. These reductions contain previously unknown integrable hierarchies as well.
収録刊行物
-
- 数理解析研究所講究録別冊
-
数理解析研究所講究録別冊 B87 57-78, 2021-08
Research Institute for Mathematical Sciences, Kyoto University
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050852945208878080
-
- NII論文ID
- 120007167310
-
- NII書誌ID
- AA12196120
-
- HANDLE
- 2433/265828
-
- ISSN
- 18816193
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- CiNii Articles