SEQUENTIAL ENDS AND NONSTANDARD INFINITE BOUNDARIES OF COARSE SPACES (Research Trends on General Topology and its Related Fields)

機関リポジトリ (HANDLE) オープンアクセス

この論文をさがす

説明

This paper is an addendum to the author's previous paper ["A nonstandard invariant of coarse spaces, " The Graduate Journal of Mathematics, vol. 5, no. 1, pp. 1-8, 2020.]. Miller et al. [B. Miller, L. Stibich, and J. Moore, "An invariant of metric spaces under homologous equivalences, " Mathematics Exchange, vol. 7, no. 1, pp. 12-19, 2010.] introduced a functor σ: Coarse* → Sets, where Coarse* is the category of pointed coarse spaces and coarse maps. DeLyser et al. [M. DeLyser, B. LaBuz, and M. Tobash, "Sequential ends of metric spaces, " 2013, arXiv:1303.0711.] introduced a functor ε: Coarse. → Sets, and proved that ε coincides with σ on Metr* ( the full subcategory of metrisable spaces). Using techniques of nonstandard analysis, the author in ["A nonstandard invariant of coarse spaces, " The Graduate Journal of Mathematics, vol. 5, no. 1, pp. 1-8, 2020.] provided a functor ι: l ⊆ Coarse, → Sets, where l is an arbitrary small full subcategory, and a natural transformation ω: σ ↾ l ⇒ ι. The surjectivity of ω has been proved for all proper geodesic metrisable spaces, while the injectivity has remained open. In this note, we first pointed out that w is the composition of two natural transformations φ ↾ l : σ ↾ l ⇒ ε ↾ l and ω' : ε ↾ l ⇒ ι, and then show that ω' is injective for all spaces in l. As a corollary, ω is injective for all metrisable spaces in l. This partially answers some of the problems posed in ["A nonstandard invariant of coarse spaces, " The Graduate Journal of Mathematics, vol. 5, no. 1, pp. 1-8, 2020.].

収録刊行物

関連プロジェクト

もっと見る

キーワード

詳細情報 詳細情報について

  • CRID
    1050854718196562816
  • NII書誌ID
    AN00061013
  • HANDLE
    2433/268817
  • ISSN
    18802818
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • IRDB

問題の指摘

ページトップへ