Experiments on classification of electroencephalography (EEG) signals in imagination of direction using Stacked Autoencoder
-
- Tomonaga Kenta
- Department of Systems Design and Informatics, Kyushu Institute of Technology
-
- Hayakawa Takuya
- Department of Systems Design and Informatics, Kyushu Institute of Technology
-
- Kobayashi Jun
- Department of Systems Design and Informatics, Kyushu Institute of Technology
説明
This paper presents classification methods for electroencephalography (EEG) signals in imagination of direction measured by a portable EEG headset. In the authors' previous studies, principal component analysis extracted significant features from EEG signals to construct neural network classifiers. To improve the performance, the authors have implemented a Stacked Autoencoder (SAE) for the classification. The SAE carries out feature extraction and classification in a form of multi-layered neural network. Experimental results showed that the SAE outperformed the previous classifiers.
収録刊行物
-
- 人工生命とロボットに関する国際会議予稿集
-
人工生命とロボットに関する国際会議予稿集 22 468-471, 2017-01-19
株式会社ALife Robotics
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001288144359552
-
- NII論文ID
- 120006665057
-
- ISSN
- 21887829
- 23526386
-
- HANDLE
- 10228/00006862
-
- 本文言語コード
- en
-
- 資料種別
- conference paper
-
- データソース種別
-
- JaLC
- IRDB
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可