On the Structure of Hrushovski's Pseudoplanes Associated to Irrational Numbers (Model theoretic aspects of the notion of independence and dimension)

機関リポジトリ (HANDLE) オープンアクセス

この論文をさがす

説明

Let α be an irrational number, and a/b a reduced fraction. Suppose 2/3 < α < a/b < 3/4 and b is sufficiently large. Let B be a canonical twig for a/ b and A the set of all leaves in B. Let p ∈ B be a good vertex of B over A. Let M be the generic structure for (K[f], <) where f is the Hrushovski's log-like function associated to a. Assume that B is a closed subset of M. Let D be the orbit of p over A in M. Then M = cl(D). Actually, we can prove this only assuming O < α < a/b < 1.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1050860687400549760
  • NII書誌ID
    AN00061013
  • HANDLE
    2433/285442
  • ISSN
    18802818
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • IRDB

問題の指摘

ページトップへ