On the Structure of Hrushovski's Pseudoplanes Associated to Irrational Numbers (Model theoretic aspects of the notion of independence and dimension)
-
- 桔梗, 宏孝
- 神戸大学大学院システム情報学研究科
この論文をさがす
説明
Let α be an irrational number, and a/b a reduced fraction. Suppose 2/3 < α < a/b < 3/4 and b is sufficiently large. Let B be a canonical twig for a/ b and A the set of all leaves in B. Let p ∈ B be a good vertex of B over A. Let M be the generic structure for (K[f], <) where f is the Hrushovski's log-like function associated to a. Assume that B is a closed subset of M. Let D be the orbit of p over A in M. Then M = cl(D). Actually, we can prove this only assuming O < α < a/b < 1.
収録刊行物
-
- 数理解析研究所講究録
-
数理解析研究所講究録 2249 83-96, 2023-04
京都大学数理解析研究所
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050860687400549760
-
- NII書誌ID
- AN00061013
-
- HANDLE
- 2433/285442
-
- ISSN
- 18802818
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB