Ground states and associated path measures in the renormalized Nelson model

機関リポジトリ (HANDLE) オープンアクセス

この論文をさがす

説明

We prove the existence, uniqueness, and strict positivity of ground states of the possibly massless renormalized Nelson operator under an infrared regularity condition and for Kato decomposable electrostatic potentials fulfilling a binding condition. If the infrared regularity condition is violated, then we show non-existence of ground states of the massless renormalized Nelson operator with an arbitrary Kato decomposable potential. Furthermore, we prove the existence, uniqueness, and strict positivity of ground states of the massless renormalized Nelson operator in a non-Fock representation where the infrared condition is unnecessary. Exponential and superexponential estimates on the pointwise spatial decay and the decay with respect to the boson number for elements of spectral subspaces below localization thresholds are provided. Moreover, some continuity properties of ground state eigenvectors are discussed. Byproducts of our analysis are a hypercontractivity bound for the semigroup and a new remark on Nelson’s operator theoretic renormalization procedure. Finally, we construct path measures associated with ground states of the renormalized Nelson operator. Their analysis entails improved boson number decay estimates for ground state eigenvectors, as well as upper and lower bounds on the Gaussian localization with respect to the field variables in the ground state. As our results on uniqueness, positivity, and path measures exploit the ergodicity of the semigroup, we restrict our attention to one matter particle. All results are non-perturbative.

収録刊行物

関連プロジェクト

もっと見る

詳細情報 詳細情報について

  • CRID
    1050862853910340608
  • NII書誌ID
    AA10723815
  • ISSN
    17936659
    0129055X
  • HANDLE
    2324/7173523
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB

問題の指摘

ページトップへ