Multi-petahertz electron interference in Cr:Al2O3 solid-state material

DOI IR IR (HANDLE) HANDLE PDF View 1 Remaining Hide 8 Citations 31 References Open Access
  • Mashiko, Hiroki
    NTT Basic Research Laboratories
  • Chisuga, Yuta
    NTT Basic Research Laboratories, Department of Physics, Graduate School of Engineering, Yokohama National University
  • Katayama, Ikufumi
    Department of Physics, Graduate School of Engineering, Yokohama National University
  • Oguri, Katsuya
    NTT Basic Research Laboratories
  • Masuda, Hiroyuki
    NTT Basic Research Laboratories Department of Physics, Graduate School of Engineering, Yokohama National University
  • Takeda, Jun
    Department of Physics, Graduate School of Engineering, Yokohama National University
  • Gotoh, Hideki
    NTT Basic Research Laboratories

Description

Lightwave-field-induced ultrafast electric dipole oscillation is promising for realizing petahertz (1015 Hz: PHz) signal processing in the future. In building the ultrahigh-clock-rate logic operation system, one of the major challenges will be petahertz electron manipulation accompanied with multiple frequencies. Here we study multi-petahertz interference with electronic dipole oscillations in alumina with chromium dopant (Cr:Al2O3). An intense near-infrared lightwave-field induces multiple electric inter-band polarizations, which are characterized by Fourier transform extreme ultraviolet attosecond spectroscopy. The interference results from the superposition state of periodic dipole oscillations of 667 to 383 attosecond (frequency of 1.5 to 2.6 PHz) measured by direct time-dependent spectroscopy and consists of various modulations on attosecond time scale through individual electron dephasing times of the Cr donor-like and Al2O3 conduction band states. The results indicate the possible manipulation of petahertz interference signal with multiple dipole oscillations using material band engineering and such a control will contribute to the study of ultrahigh-speed signal operation.

Journal

Citations (8)*help

See more

References(31)*help

See more

Related Projects

See more

Keywords

Details 詳細情報について

Report a problem

Back to top