Towards a classification of bifurcations in Vlasov equations
-
- 山口, 義幸
- Institut Denis Poisson, Université d'Orléans, CNRS, Université de Tours, France and Institut Universitaire de France
-
- Métivier, D.
- Center for Nonlinear Studies and Theoretical Division T-4, Los Alamos National Laboratory
-
- Yamaguchi, Y. Y.
- Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University
この論文をさがす
説明
We propose a classification of bifurcations of Vlasov equations, based on the strength of the resonance between the unstable mode and the continuous spectrum on the imaginary axis. We then identify and characterize a new type of generic bifurcation where this resonance is weak, but the unstable mode couples with a stable mode and a Casimir invariant of the system to form a size-3 Jordan block. We derive a three-dimensional reduced noncanonical Hamiltonian system describing this bifurcation. Comparison of the reduced dynamics with direct numerical simulations on a test case gives excellent agreement. We finally discuss the relevance of this bifurcation to specific physical situations.
収録刊行物
-
- Physical Review E
-
Physical Review E 102 (5), 2020-11
American Physical Society (APS)
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1051412328428773760
-
- NII論文ID
- 120006898198
-
- NII書誌ID
- AA11558033
-
- ISSN
- 24700045
- 24700053
-
- HANDLE
- 2433/258958
-
- PubMed
- 33327081
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE