Genomic predictions and genome-wide association studies based on RAD-seq of quality-related metabolites for the genomics-assisted breeding of tea plants
説明
<jats:title>Abstract</jats:title><jats:p>Effectively using genomic information greatly accelerates conventional breeding and applying it to long-lived crops promotes the conversion to genomic breeding. Because tea plants are bred using conventional methods, we evaluated the potential of genomic predictions (GPs) and genome-wide association studies (GWASs) for the genetic breeding of tea quality-related metabolites using genome-wide single nucleotide polymorphisms (SNPs) detected from restriction site-associated DNA sequencing of 150 tea accessions. The present GP, based on genome-wide SNPs, and six models produced moderate prediction accuracy values (<jats:italic>r</jats:italic>) for the levels of most catechins, represented by ( −)-epigallocatechin gallate (<jats:italic>r</jats:italic> = 0.32–0.41) and caffeine (<jats:italic>r</jats:italic> = 0.44–0.51), but low <jats:italic>r</jats:italic> values for free amino acids and chlorophylls. Integrated analysis of GWAS and GP detected potential candidate genes for each metabolite using 80–160 top-ranked SNPs that resulted in the maximum cumulative prediction value. Applying GPs and GWASs to tea accession traits will contribute to genomics-assisted tea breeding.</jats:p>
収録刊行物
-
- Scientific Reports
-
Scientific Reports 10 17480-, 2020-10-15
Springer Nature
- Tweet
キーワード
- Genotype
- Science
- Polymorphism, Single Nucleotide
- Camellia sinensis
- Catechin
- Linkage Disequilibrium
- Article
- Genetics
- Genetic Association Studies
- Q
- R
- Computational Biology
- Genomics
- Sequence Analysis, DNA
- Computational biology and bioinformatics
- Plant Breeding
- Phenotype
- Medicine
- Plant sciences
- Genome, Plant
- Biotechnology
詳細情報 詳細情報について
-
- CRID
- 1051975278319870464
-
- NII論文ID
- 120006891196
-
- ISSN
- 20452322
-
- HANDLE
- 10297/00027742
-
- PubMed
- 33060786
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE