<i>T</i>-systems and<i>Y</i>-systems in integrable systems

この論文をさがす

説明

The T and Y-systems are ubiquitous structures in classical and quantum integrable systems. They are difference equations having a variety of aspects related to commuting transfer matrices in solvable lattice models, q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, cluster algebras with coefficients, periodicity conjectures of Zamolodchikov and others, dilogarithm identities in conformal field theory, difference analogue of L-operators in KP hierarchy, Stokes phenomena in 1d Schr��dinger problem, AdS/CFT correspondence, Toda field equations on discrete space-time, Laplace sequence in discrete geometry, Fermionic character formulas and combinatorial completeness of Bethe ansatz, Q-system and ideal gas with exclusion statistics, analytic and thermodynamic Bethe ans��tze, quantum transfer matrix method and so forth. This review article is a collection of short reviews on these topics which can be read more or less independently.

156 pages. Minor corrections including the last paragraph of sec.3.5, eqs.(4.1), (5.28), (9.37) and (13.54). The published version (JPA topical review) also needs these corrections

収録刊行物

被引用文献 (16)*注記

もっと見る

参考文献 (240)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ