Iron deficiency responses in rice roots

説明

<jats:title>Abstract</jats:title> <jats:p>Iron (Fe) is an essential element for most living organisms. To acquire sparingly soluble Fe from the rhizosphere, rice roots rely on two Fe acquisition pathways. The first of these pathways involves Fe(III) chelators specific to graminaceous plants, the mugineic acid family phytosiderophores, and the second involves absorption of Fe<jats:sup>2+</jats:sup>. Key components in this response include enzymes involved in the biosynthesis of deoxymugineic acid (OsNAS1, OsNAS2, OsNAAT1, and OsDMAS1), the deoxymugineic acid efflux transporter (TOM1), the Fe(III)-deoxymugineic acid transporter (OsYSL15), and Fe<jats:sup>2+</jats:sup> transporters (OsIRT1, OsIRT2, and OsNRAMP1). In whole roots, these proteins are expressed in a coordinated manner with strong transcriptional induction in response to Fe deficiency. Radial transport of Fe to xylem and phloem is also mediated by the mugineic acid family phytosiderophores, as well as other chelators and their transporters, including Fe(II)-nicotianamine transporter (OsYSL2), phenolics efflux transporters (PEZ1 and PEZ2), and citrate efflux transporter (OsFRDL1). Among these, OsYSL2 is strongly induced under conditions of Fe deficiency. Both transcriptional induction and potential feedback repression mediate the expressional regulation of the genes involved in Fe uptake and translocation in response to Fe deficiency. The transcription factors IDEF1, IDEF2, and OsIRO2 are responsible for transcriptional induction, whereas the ubiquitin ligases OsHRZ1 and OsHRZ2, as well as the transcription factors OsIRO3 and OsbHLH133, are thought to mediate negative regulation. Furthermore, IDEF1 and OsHRZs bind Fe and other metals, and are therefore candidate Fe sensors. The interacting functions of these regulators are thought to fine tune the expression of proteins involved in Fe uptake and translocation.</jats:p>

収録刊行物

  • Rice

    Rice 7 (1), 27-, 2014-10-07

    Springer Science and Business Media LLC

被引用文献 (16)*注記

もっと見る

参考文献 (80)*注記

もっと見る

関連プロジェクト

もっと見る

問題の指摘

ページトップへ