Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial Networks

  • Tomoyuki Fujioka
    Department of Diagnostic Radiology, Tokyo Medical and Dental University Hospital 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan
  • Mio Mori
    Department of Diagnostic Radiology, Tokyo Medical and Dental University Hospital 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan
  • Kazunori Kubota
    Department of Diagnostic Radiology, Tokyo Medical and Dental University Hospital 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan
  • Yuka Kikuchi
    Department of Diagnostic Radiology, Tokyo Medical and Dental University Hospital 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan
  • Leona Katsuta
    Department of Diagnostic Radiology, Tokyo Medical and Dental University Hospital 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan
  • Mio Adachi
    Department of Surgery, Breast Surgery, Tokyo Medical and Dental University Hospital 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan
  • Goshi Oda
    Department of Surgery, Breast Surgery, Tokyo Medical and Dental University Hospital 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan
  • Tsuyoshi Nakagawa
    Department of Surgery, Breast Surgery, Tokyo Medical and Dental University Hospital 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan
  • Yoshio Kitazume
    Department of Diagnostic Radiology, Tokyo Medical and Dental University Hospital 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan
  • Ukihide Tateishi
    Department of Diagnostic Radiology, Tokyo Medical and Dental University Hospital 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan

説明

<jats:p>Deep convolutional generative adversarial networks (DCGANs) are newly developed tools for generating synthesized images. To determine the clinical utility of synthesized images, we generated breast ultrasound images and assessed their quality and clinical value. After retrospectively collecting 528 images of 144 benign masses and 529 images of 216 malignant masses in the breasts, synthesized images were generated using a DCGAN with 50, 100, 200, 500, and 1000 epochs. The synthesized (n = 20) and original (n = 40) images were evaluated by two radiologists, who scored them for overall quality, definition of anatomic structures, and visualization of the masses on a five-point scale. They also scored the possibility of images being original. Although there was no significant difference between the images synthesized with 1000 and 500 epochs, the latter were evaluated as being of higher quality than all other images. Moreover, 2.5%, 0%, 12.5%, 37.5%, and 22.5% of the images synthesized with 50, 100, 200, 500, and 1000 epochs, respectively, and 14% of the original images were indistinguishable from one another. Interobserver agreement was very good (|r| = 0.708–0.825, p < 0.001). Therefore, DCGAN can generate high-quality and realistic synthesized breast ultrasound images that are indistinguishable from the original images.</jats:p>

収録刊行物

  • Diagnostics

    Diagnostics 9 (4), 176-, 2019-11-06

    MDPI AG

被引用文献 (3)*注記

もっと見る

参考文献 (9)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ