Histone acetylation in astrocytes suppresses GFAP and stimulates a re-organization of the intermediate filament network
説明
<jats:p>Glial Fibrillary Acidic Protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation controls GFAP expression also in mature astrocytes. Inhibition of histone deacetylases (HDACs) with Trichostatin-A or Sodium-butyrate reduced GFAP expression in primary human astrocytes and astrocytoma cells. Since splicing occurs co-transcriptional, we investigated whether histone acetylation changes the ratio between the canonical isoform GFAPα and the alternative GFAPδ splice-variant. We observed that decreased transcription of GFAP enhanced alternative isoform expression, as HDAC inhibition increased the GFAPδ/α ratio favouring GFAPδ. Expression of GFAPδ was dependent on the presence and binding of the splicing factors of the SR protein family. Inhibition of HDAC activity also resulted in aggregation of the GFAP network, reminiscent to our earlier findings of a GFAPδ-induced network collapse. Together, our data demonstrate that HDAC inhibition results in changes in transcription, splicing, and organization of GFAP. These data imply that a tight regulation of histone acetylation in astrocytes is essential, since dysregulation of gene expression causes aggregation of GFAP, a hallmark of human diseases like Alexander's disease.</jats:p>
収録刊行物
-
- Journal of Cell Science
-
Journal of Cell Science 127 4368-, 2014-01-01
The Company of Biologists