Linear-superelastic Ti-Nb nanocomposite alloys with ultralow modulus via high-throughput phase-field design and machine learning

説明

<jats:title>Abstract</jats:title><jats:p>The optimal design of shape memory alloys (SMAs) with specific properties is crucial for the innovative application in advanced technologies. Herein, inspired by the recently proposed design concept of concentration modulation, we explore martensitic transformation (MT) in and design the mechanical properties of Ti-Nb nanocomposites by combining high-throughput phase-field simulations and machine learning (ML) approaches. Systematic phase-field simulations generate data of the mechanical properties for various nanocomposites constructed by four macroscopic degrees of freedom. An ML-assisted strategy is adopted to perform multiobjective optimization of the mechanical properties, through which promising nanocomposite configurations are prescreened for the next set of phase-field simulations. The ML-guided simulations discover an optimized nanocomposite, composed of Nb-rich matrix and Nb-lean nanofillers, that exhibits a combination of mechanical properties, including ultralow modulus, linear super-elasticity, and near-hysteresis-free in a loading-unloading cycle. The exceptional mechanical properties in the nanocomposite originate from optimized continuous MT rather than a sharp first-order transition, which is common in typical SMAs. This work demonstrates the great potential of ML-guided phase-field simulations in the design of advanced materials with extraordinary properties.</jats:p>

収録刊行物

参考文献 (51)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ