Realizing Superior Redox Kinetics of Hollow Bimetallic Sulfide Nanoarchitectures by Defect‐Induced Manipulation toward Flexible Solid‐State Supercapacitors

  • Shude Liu
    School of Mechanical Engineering Yonsei University Seoul 120‐749 South Korea
  • Ling Kang
    Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University 500 Dongchuan Road Shanghai 200241 China
  • Jisong Hu
    School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
  • Euigeol Jung
    School of Mechanical Engineering Yonsei University Seoul 120‐749 South Korea
  • Joel Henzie
    JST‐ERATO Yamauchi Materials Space‐Tectonics Project and International Center for Materials Nanoarchitectonics National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
  • Azhar Alowasheeir
    JST‐ERATO Yamauchi Materials Space‐Tectonics Project and International Center for Materials Nanoarchitectonics National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
  • Jian Zhang
    Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University 500 Dongchuan Road Shanghai 200241 China
  • Ling Miao
    School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
  • Yusuke Yamauchi
    JST‐ERATO Yamauchi Materials Space‐Tectonics Project and International Center for Materials Nanoarchitectonics National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
  • Seong Chan Jun
    School of Mechanical Engineering Yonsei University Seoul 120‐749 South Korea

抄録

<jats:title>Abstract</jats:title><jats:p>As a typical battery‐type material, CuCo<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> is a promising candidate for supercapacitors due to the high theoretical specific capacity. However, its practical application is plagued by inherently sluggish ion diffusion kinetics and inferior electrical transport properties. Herein, sulfur vacancies are incorporated in CuCo<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> hollow nanoarchitectures (HNs) to accelerate redox reactivity. Experimental analyses and theoretical investigations uncover that the generated sulfur vacancies increase the active electron states, reduce the adsorption barriers of electrolyte ions, and enrich reactive redox species, thus achieving enhanced electrochemical performance. Consequently, the deficient CuCo<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> with optimized vacancy concentration presents a high specific capacity of 231 mAh g<jats:sup>−1</jats:sup> at 1 A g<jats:sup>−1</jats:sup>, a ≈1.78 times increase compared to that of pristine CuCo<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub>, and exhibits a superior rate capability (73.8% capacity retention at 20 A g<jats:sup>−1</jats:sup>). Furthermore, flexible solid‐state asymmetric supercapacitor devices assembled with the deficient CuCo<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> HNs and VN nanosheets deliver a high energy density of 61.4 W h kg<jats:sup>−1</jats:sup> at 750 W kg<jats:sup>−1</jats:sup>. Under different bending states, the devices display exceptional mechanical flexibility with no obvious change in CV curves at 50 mV s<jats:sup>−1</jats:sup>. These findings provide insights for regulating electrode reactivity of battery‐type materials through intentional nanoarchitectonics and vacancy engineering.</jats:p>

収録刊行物

  • Small

    Small 18 (5), 2104507-, 2021-11-24

    Wiley

被引用文献 (1)*注記

もっと見る

参考文献 (70)*注記

もっと見る

関連プロジェクト

もっと見る

問題の指摘

ページトップへ