Frontiers of magnetic force microscopy

  • O. Kazakova
    National Physical Laboratory 1 , Hampton Road, Teddington TW11 0LW, United Kingdom
  • R. Puttock
    National Physical Laboratory 1 , Hampton Road, Teddington TW11 0LW, United Kingdom
  • C. Barton
    National Physical Laboratory 1 , Hampton Road, Teddington TW11 0LW, United Kingdom
  • H. Corte-León
    National Physical Laboratory 1 , Hampton Road, Teddington TW11 0LW, United Kingdom
  • M. Jaafar
    CSIC 3 , Campus Cantoblanco, 28049 Madrid, Spain
  • V. Neu
    Leibniz Institute for Solid State and Materials Research 4 , Dresden 01069, Germany
  • A. Asenjo
    CSIC 3 , Campus Cantoblanco, 28049 Madrid, Spain

抄録

<jats:p>Since it was first demonstrated in 1987, magnetic force microscopy (MFM) has become a truly widespread and commonly used characterization technique that has been applied to a variety of research and industrial applications. Some of the main advantages of the method includes its high spatial resolution (typically ∼50 nm), ability to work in variable temperature and applied magnetic fields, versatility, and simplicity in operation, all without almost any need for sample preparation. However, for most commercial systems, the technique has historically provided only qualitative information, and the number of available modes was typically limited, thus not reflecting the experimental demands. Additionally, the range of samples under study was largely restricted to “classic” ferromagnetic samples (typically, thin films or patterned nanostructures). Throughout this Perspective article, the recent progress and development of MFM is described, followed by a summary of the current state-of-the-art techniques and objects for study. Finally, the future of this fascinating field is discussed in the context of emerging instrumental and material developments. Aspects including quantitative MFM, the accurate interpretation of the MFM images, new instrumentation, probe-engineering alternatives, and applications of MFM to new (often interdisciplinary) areas of the materials science, physics, and biology will be discussed. We first describe the physical principles of MFM, specifically paying attention to common artifacts frequently occurring in MFM measurements; then, we present a comprehensive review of the recent developments in the MFM modes, instrumentation, and the main application areas; finally, the importance of the technique is speculated upon for emerging or anticipated to emerge fields including skyrmions, 2D-materials, and topological insulators.</jats:p>

収録刊行物

被引用文献 (4)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ