説明
<jats:p> Spectral clustering has been a popular data clustering algorithm. This category of approaches often resort to other clustering methods, such as K-Means, to get the final cluster. The potential flaw of such common practice is that the obtained relaxed continuous spectral solution could severely deviate from the true discrete solution. In this paper, we propose to impose an additional orthonormal constraint to better approximate the optimal continuous solution to the graph cut objective functions. Such a method, called spectral rotation in literature, optimizes the spectral clustering objective functions better than K-Means, and improves the clustering accuracy. We would provide efficient algorithm to solve the new problem rigorously, which is not significantly more costly than K-Means. We also establish the connection between our method andK-Means to provide theoretical motivation of our method. Experimental results show that our algorithm consistently reaches better cut and meanwhile outperforms in clustering metrics than classic spectral clustering methods. </jats:p>
収録刊行物
-
- Proceedings of the AAAI Conference on Artificial Intelligence
-
Proceedings of the AAAI Conference on Artificial Intelligence 27 (1), 431-437, 2013-06-30
Association for the Advancement of Artificial Intelligence (AAAI)