Remediation of Chromium (VI) from Groundwater by Metal-Based Biochar under Anaerobic Conditions

抄録

<jats:p>Iron salt-modified biochar has been widely used to remove Cr(VI) pollution due to the combination of the generated iron oxides and biochar, which can bring positive charge and rich redox activity. However, there are few comprehensive studies on the methods of modifying biochar with different iron salts. In this study, two iron salt (FeCl3 and Fe(NO3)3) modification methods were used to prepare two Fe-modified biochar materials for removing Cr(VI) in simulated groundwater environment. It was revealed by systematic characterization that FeCl3@BC prepared via the FeCl3 modification method, has larger pore size, higher zeta potential and iron oxide content, and has higher Cr(VI) adsorption-reduction performance efficiency as compared to Fe(NO3)3@BC prepared via Fe(NO3)3 modification method. Combined with XRD and XPS analyses, Fe3O4 is the key active component for the reduction of Cr(VI) to Cr(III). The experimental results have shown that acidic conditions promoted Cr(VI) removal, while competing ions (SO42− and PO43−) inhibited Cr(VI) removal by FeCl3@BC. The Elovich model and intra-particle diffusion model of FeCl3@BC can describe the adsorption behavior of Cr(VI) well, indicating that both the high activation energy adsorption process and intra-particle diffusion control the removal process of Cr(VI). The Freundlich model (R2 > 0.999) indicated that there were unevenly distributed chemisorptions centers on the FeCl3@BC surface. Stability experiments exposed that FeCl3@BC was stable under neutral, acidic, and alkaline conditions. Furthermore, the main mechanisms of FeCl3@BC removal of Cr(VI) include electrostatic adsorption, chemical reduction, ion exchange, and co-precipitation. In conclusion, our findings provide a new insight for the selection of iron salt-modified biochar methods, and will also be beneficial for the preparation of more efficient Fe-modified biochars in the future.</jats:p>

収録刊行物

  • Water

    Water 14 (6), 894-, 2022-03-12

    MDPI AG

被引用文献 (2)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ