A <sup>43</sup>Ca nuclear magnetic resonance perspective on octacalcium phosphate and its hybrid derivatives

  • Danielle Laurencin
    ICGM University of Montpellier, CNRS, ENSCM Montpellier France
  • Yang Li
    Department of Chemistry University of Cambridge Cambridge UK
  • Melinda J. Duer
    Department of Chemistry University of Cambridge Cambridge UK
  • Dinu Iuga
    Department of Physics University of Warwick Coventry UK
  • Christel Gervais
    LCMCP—Chemistry of Condensed Matter Laboratory of Paris Sorbonne University Paris France
  • Christian Bonhomme
    LCMCP—Chemistry of Condensed Matter Laboratory of Paris Sorbonne University Paris France

抄録

<jats:title>Abstract</jats:title><jats:p><jats:sup>43</jats:sup>Ca nuclear magnetic resonance (NMR) spectroscopy has been extensively applied to the detailed study of octacalcium phosphate (OCP), Ca<jats:sub>8</jats:sub>(HPO<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>4</jats:sub>.5H<jats:sub>2</jats:sub>O, and hybrid derivatives involving intercalated metabolic acids (viz., citrate, succinate, formate, and adipate). Such phases are of importance in the development of a better understanding of bone structure. High‐resolution <jats:sup>43</jats:sup>Ca magic angle spinning (MAS) experiments, including double‐rotation (DOR) <jats:sup>43</jats:sup>Ca NMR, as well as <jats:sup>43</jats:sup>Ca{<jats:sup>1</jats:sup>H} rotational echo DOR (REDOR) and <jats:sup>31</jats:sup>P{<jats:sup>43</jats:sup>Ca} REAPDOR NMR spectra, were recorded on a <jats:sup>43</jats:sup>Ca‐labeled OCP phase at very high magnetic field (20 T), and complemented by ab initio calculations of NMR parameters using the Gauge‐Including Projector Augmented Wave–density functional theory (GIPAW‐DFT) method. This enabled a partial assignment of the eight inequivalent Ca<jats:sup>2+</jats:sup> sites of OCP. Natural‐abundance <jats:sup>43</jats:sup>Ca MAS NMR spectra were then recorded for the hybrid organic–inorganic derivatives, revealing changes in the <jats:sup>43</jats:sup>Ca lineshape. In the case of the citrate derivative, these could be interpreted on the basis of computational models of the structure. Overall, this study highlights the advantages of combining high‐resolution <jats:sup>43</jats:sup>Ca NMR experiments and computational modeling for studying complex hybrid biomaterials.</jats:p>

収録刊行物

被引用文献 (2)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ