Spatiotemporal vertical velocity variation in the western tropical Pacific and its relation to decadal ocean variability

DOI PDF Web Site 参考文献58件 オープンアクセス

説明

<jats:sec> <jats:title>Abstract</jats:title> <jats:p>Prior to the cold phase of the Pacific decadal oscillation (PDO), sea surface water in the western tropical North Pacific is heated. To evaluate the impact of the subsurface water on the upper-ocean (<jats:inline-formula><jats:alternatives><jats:tex-math>$$<100$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo><</mml:mo> <mml:mn>100</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> m depth) temperature variation, we examined the vertical velocity variation. We applied altimetry-based gravest empirical mode (AGEM) method to Argo hydrographic profile (2001–2017) and altimetric sea surface height (1993–2017) data in the western tropical Pacific and obtained a time-varying three-dimensional (3D) potential density field in the layer from 100 to 1000 m depth. From the AGEM-derived potential density, we derived a 3D field of vertical velocity below 100 m depth by the P-vector inverse method, which is based on potential density and vorticity conservations, and examined the spatiotemporal characteristics, focusing on the seasonal to quasi-decadal (QD) variations. In the mean state, substantial upward current (<jats:inline-formula><jats:alternatives><jats:tex-math>$$>10^{-6}\,{\text {m\,s}}^{-1}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>></mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> <mml:mspace /> <mml:msup> <mml:mrow> <mml:mtext>m\,s</mml:mtext> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>) is observed in the region of <jats:inline-formula><jats:alternatives><jats:tex-math>$$10^{\circ }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mn>10</mml:mn> <mml:mo>∘</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>–<jats:inline-formula><jats:alternatives><jats:tex-math>$$17^{\circ }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mn>17</mml:mn> <mml:mo>∘</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>N, <jats:inline-formula><jats:alternatives><jats:tex-math>$$140^{\circ }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mn>140</mml:mn> <mml:mo>∘</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>E–<jats:inline-formula><jats:alternatives><jats:tex-math>$$180^{\circ }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mn>180</mml:mn> <mml:mo>∘</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula> in the North Equatorial Current, southern part of the North Pacific subtropical gyre. Possibly besides the Ekman upwelling, the upward current contributes to the cooling of the upper ocean in the western tropical North Pacific through the upward advection of the deep cold water. The upward current was found to be intensified (attenuated) by the strengthening (weakening) of the subtropical gyre interior southward flow on the QD timescale in association with frequent occurrences of La Niña (El Niño) events. The weakening of the upward current is responsible for the QD increase in upper-ocean temperature in the western tropical North Pacific, which is equivalent to or larger than <jats:inline-formula><jats:alternatives><jats:tex-math>$$0.2~^{\circ }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0.2</mml:mn> <mml:msup> <mml:mspace /> <mml:mo>∘</mml:mo> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>C, several years after the warm phase of the PDO. The QD temperature variation may affect the phase reversal of the PDO through the heat transport of the western boundary current of the subtropical gyre, i.e., the Kuroshio.</jats:p> </jats:sec>

収録刊行物

参考文献 (58)*注記

もっと見る

関連プロジェクト

もっと見る

問題の指摘

ページトップへ